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Abstract Wepresent a biomechanicalmodel based simulationmethod for examining
the patient lung deformation induced by respiratory motion, given only one CT scan
input. We model the lung stress-strain behavior using a sophisticated hyperelastic
model, and solve the lung deformation problem through finite element (FE) analy-
sis. We introduce robust algorithms to segment out the diaphragm control points and
spine regions to carefully define the boundary conditions and loads. Experimental
results through comparing with the manually labeled landmark points in real patient
4DCT data demonstrate that our lung deformation simulator is accurate.

1 Introduction

The use of four-dimensional computed tomography (4DCT) has becoming a common
practice in radiation therapy, especially for treating tumors in thoracic areas. There
are two alternative methods for 4DCT acquisition, namely retrospective slice sorting
and prospective sinogram selection. No matter which method is used, the prolonged
acquisition time results in a considerably increased radiation dose. For example, the
radiation dose of a standard 4DCT scan is about 6 times of that of a typical helical
CT scan and 500 times of a chest X-ray. Moreover, 4DCT acquisition cannot be
applied to determine the tumor position in-situ. These facts have become a major
concern in the clinical application of 4DCT, motivating development of advanced
4DCT simulators.

Towards this goal, various approaches have been proposed tomodel lung inflation/
deflation. The first category of methods discretize the soft tissues (and bones) into
masses (nodes) and connect them using springs and dampers (edges) based on mass-
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spring-damper system and CT scan values for spline-based MCAT phantoms [15],
augmented reality basedmedical visualization [14], respiration animation [22], tumor
motion modeling [20], and etc. Conventionally, they apply affine transformations to
the control points to simulate respiratory motion. Lungs and body outline are linked
to the surrounding ribs, such that they would have the synchronized expansion and
contraction [15]. These approaches can only provide approximate deformations.

The second category of methods use hyperelastic models to describe the non-
linear stress-strain behavior of the lung. The straightforward way to simulate lung
deformation between two breathing phases (Ti , Ti+1) is to use the lung shape at Ti+1
as the contact/constraint surface and deform the lung at Ti based on the predefined
mechanical properties of lung [8, 17]. In this case, a negative pressure load on the
lung surface is applied and Finite Element (FE) analysis is used to deform tissues
[21]. The lung will expand according to the negative pressure and slide against the
contact surface to imitate the pleural fluid mechanism [3]. This pressure can be
estimated from the patient’s pleural pressure versus lung volume curve, which in
turn are measured from pulmonary compliance test [19]. Along this line, patient-
specific biomechanical parameters on the modeling process for FE analysis using
4DCT data are learned in [18]. A deformable image registration of lungs study to
find the optimum sliding characteristics and material compressibility using 4DCT
data is presented in [1].

Besides lung deformation, the displacements of rib cage and diaphragm are also
very important to design a realistic 4DCT simulator. Didier et al. [4] assume the rib
cagemotion is a rigid transformation and use finite helical axismethod to simulate the
kinematic behavior of the rib cage. They develop this method into a chest wall model
[5] relating the ribs motion to thorax-outer surface motion for lung simulation. Saadé
et al. [13] build a simple diaphragmmodel consisting of central tendon and peripheral
muscular fibre. They apply cranio-caudal (CC) forces on each node of the muscular
fibre to mimic the diaphragm contraction and use Gauchy-Green deformation tensor
to describe the lung deformation. Hostettler et al. [9] consider internal organs inside
the rib cage as a convex balloon and estimate internal deformation field directly
through interpolation of the skin marker motions.

Patient-customized deformation approaches often assume a 4DCTof the patient is
already available.We note that simulating deformations without any 4DCT hasmany
challenges as lungmotion changes considerably depending on health condition (with
or without cancer), breathing pattern (abdomen vs. chest wall), age and many other
factors. Nevertheless, 4DCT simulation without any prior (e.g. 4DCT of the same
patient) is useful for developing treatment strategy in image-guided radiotherapy
and generating controlled data to design and evaluate X-ray video based medical
solutions.

In this paper, we present a biomechanical model based thoracic 4DCT simulation
method that can faithfully simulate the deformation of lung and nearby organs for
the whole breathing cycle. Our method takes only one CT scan as input, and defines
the loads on the rib cage and the diaphragm to constrain the lung deformation. This
differentiates ourmethod from conventional continuummechanics based algorithms.
In the extended version of this paper, we also simulate the passive mass-springmodel
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Fig. 1 Processing pipeline of our biomechanical simulation of lung deformations from one CT
scan. The tetrahedra on the cutting plane of the volume mesh are colored in purple. Red points
indicate imposed automatic boundary constraints

based deformation of abdominal organs due to lung inflation/deflation. Conversion
from density to mass assumptions for mass-spring model are supported by clinical
data. To evaluate the accuracy of our simulator, we perform both qualitative image
visual examination and quantitative comparison on expert annotated lung interior
point pairs between multiple breathing phases, and demonstrate that our biomechan-
ical model based simulation is very accurate. Figure1 shows the processing pipeline
of our 4DCT simulator based on biomechanical model.
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2 Methods

2.1 Boundary Constraints Definition

For simplicity of notation, we use x, y and z to represent lateral, anterioposterior
(AP), and superoinferior (SI) direction respectively. Since we do not assume we
have a 4DCT of the patient available, it is not possible to use the actual lung surfaces
of different breathing phases to define the deformation boundary constraints.

Instead, we define boundary constraints on the lung surface based on the anatomy
and function of the human respiratory system [16] for the lung deformation. First,
considering that the upper lobes of the lung are well constrained by the ribs, the
displacement vectors (x, y and z components) of the tip surface region of upper
lobes are fixed to avoid a pure translation of the lung when simulating the diaphragm
contracting on the bottom of the lung. We take the clinical study in [6] as a basis for
these constraints.

During inspiration, the lung sliding against the rib cage mainly occurs in the pos-
terior/spine region, while in the anterior region, the lung expands with the increasing
of thoracic cavity and the relative sliding between them is much smaller [11, 23].
This phenomenon can also be observed in the DIR-Lab 4DCT dataset [2], which
is one of the most recent clinical studies with expert annotations for this problem.
Therefore, we define the boundary conditions for both the front and the back parts
of the lung surface in order to simulate the different sliding actions. As shown in the
boundary constraints box of Fig. 1, our system fixes the z displacement for all surface
mesh vertices marked in red to simulate the coherent motion of lung with the thorax
expansion on the axial plane. The selection of the vertices is based on empirical evi-
dence [2]. These vertices satisfy all these heuristics that they are on/near the convex
hull of the lung surface, around the lateral sides of the middle and lower lobes, and
have small (<20◦) normal variations.

To simulate the pleural sliding in the spine region, our simulator automatically
locates the lung surface vertices in the vicinity of the thoracic vertebrae, and fixes
the x and y displacements of these points as the third boundary constraint. Notice
that our goal is to find surface vertices close to the spine, therefore we design a
simple Gaussian curve fitting algorithm to locate these points instead of adopting
a complicated thoracic vertebrae segmentation approach. The idea is to fit a set
of Gaussian curves such that the area cut out by each curve is maximized. This
provides a good global approximation to the spine shape and the constraint points
can be accurately located. For simplicity, considering a sample 2D axial view, our
algorithm maximizes the light blue region A covered by the blue Gaussian curve

f (x) = ae
− (x−b)2

2c2 , as shown in Fig. 2a.
We formulate it as a constrained multi-variable optimization problem as:

max
a,b,c

xmax∑

x=xmin

f (x), s.t. f (x) − g(x) ≤ 0,∀x ∈ [xmin, xmax ], (1)
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Fig. 2 Gaussian curve fitting for spine region estimation: a 2D Gaussian curve fitting on a CT
slice, b and c the different views of our 3D curve fitting results, and d final curve fitting result after
outliers are removed
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where the parameter a, b and c represent the scaling factor, expected value, and
standard variance of f (x), xmin and xmax are the lung limits in the lateral direction,
and g(x) is the upper limit for f (x) and is the minimum y value of the lung slice
at each x . In our simulator, this constrained optimization problem is solved very
efficiently by a sequential quadratic programming method, specifically active-set
algorithm, which computes a quasi-Newton approximation to the Hessian of the
Lagrangian at each iteration. We extend this 2D algorithm to the 3D CT volume by
simply applying this algorithm slice by slice, as can be seen in Fig. 2b and c. Outliers
occur in the top and bottom of the lung where g(x) is only partial constraints for the
curve fitting. Our simulator removes these outliers by computing their difference to
the mean Gaussian curve of the set, therefore correct fittings of the thoracic vertebrae
are retained. The missing curves can be estimated by linear interpolation of the
remaining curves.

2.2 Loads Definition

Since we are given one input CT scan and there is no bounding surface at the second
breathing phase, we design an extra traction applied on the diaphragm area of the
lung besides the negative intra-pleural surface pressure. The pressure force inflates
the lung in all directions during inspiration, while the traction allows additional
displacement in z direction to mimic the diaphragm contraction and pleural sliding.

Note that the pressure force can bewell defined from the simulator input, therefore
we focus on how to accurately locate the points (faces) that are close to the diaphragm
for the definition of the traction. We model this as a graph search problem and solve
it by our modified shortest closed-path algorithm. Our simulator first computes a
dense 3D point cloud by finding the lung voxels at every (x, y) location with the
largest z value, as shown in Fig. 3c, then converts the point cloud into a weight map,
Fig. 3d, based on the local geometry information, and finally locates the diaphragm
points (Fig. 4f) through our modified shortest closed-path algorithm. The left and
right lower lobe are treated separately.

Weight Map Definition: We consider the 3D point cloud as an 2D image with
intensity value from the z value of the corresponding point, and run the local Line
Direction Discrepancy (LDD) computation on this image to generate the weight
map W . Thus our weight map computation can also be viewed as a special type
of image filtering. As shown in Fig. 3a, for each line di (x, y) of a block centering
at (x, y), we build up two sub-lines d1

i (x, y) and d2
i (x, y) from (p3i , p2i , p1i ) and

(p3i , p4i , p5i ) respectively, (i = 1, . . . , 4), and compute the LDD as the minimum
intersection angle of the four sub-line pairs. Alternatively, we compute the maximum
of the cosine value of these angles to represent the weight, which can be efficiently
calculated through dot product as
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Fig. 3 Weight map calculation for diaphragm point segmentation. a The line direction definition
of our LDD measure. b Sample blocks on the lung surface to illustrate our weight calculation
algorithm. The orange region d1 of B1 has the highest LDD value out of the three sample blocks.
d The weight map corresponding to the input point cloud (c)

W (p) = max
i=1,...,4

{ d1
i · d2

i

‖ d1
i ‖ · ‖ d2

i ‖}, (2)

wherep represents pixel position (x, y), and the block size is set as 5×5 for simplicity.
Intuitively, regions with high curvature would high/positive LDD value, for example,
d1 of B3 in Fig. 3b, while flat regions would have low/negative LDD values, for
instance, B1 and B2.

Diaphragm Point Segmentation: Notice that all outliers locate at the boundary
of the weight map, thus we formulate the diaphragm point segmentation as a shortest
closed-path (SCP) problem, which finds a optimal cut along the boundary that sepa-
rates the diaphragm points from the outliers. To build the graph for SCP, we choose
4 neighborhood connection and set the edge weight Epq as W (q). Therefore, Epq
and Eqp may have different weights. Instead of using the entire weight map to build
the graph, we mask out the inner region through morphological operations and limit
the optimal cut (red curve) between the inner ∂Ω2 and outer boundary ∂Ω1 (blur
curves), as shown in Fig. 4a. If we directly adopt the idea from [10] to design the
SCP algorithm, some interior regions would be inevitably cut out to favor the lowest
cost, as shown in Fig. 4b and c.

To solve this problem, we first sample the outer boundary ∂Ω1 every 10 points
and find their corresponding points (in terms of Euclidean distance) on the inter
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Fig. 4 Diaphragm point segmentation. a Masked out the inner region: the inner ∂Ω2 and outer
boundary ∂Ω1 (blue curves). b The optimal cut by conventional SCP algorithm (in red). c The
estimated diaphragm points. Our new SCP algorithm unbends the ring regions in d into ribbon
belts, and can accurately segment out the diaphragm points for traction definition in (e) and (f)

boundary ∂Ω2, as the green lines shown in Fig. 4d. For the rest points on ∂Ω1, we
compute their matches on ∂Ω2 (purple lines) through linearly interpolation of the
previous matches (green lines), such that there are no crossing matches (lines) and
correct ordering could be maintained. In this way, we can unbend the ring region
between ∂Ω1 and ∂Ω2 into a ribbon belt by aligning up all the purple and green
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lines in order, and set the length of the ribbon as the length of ∂Ω1 and the width
as the shortest distance between ∂Ω1 and ∂Ω2. We then build up a new adjacency
matrix/graph from the ribbon for the SCP algorithm. As we can see from Fig. 4e and
f, this would give us the accurate diaphragm points for the traction definition.

2.3 Finite Element Simulation

The final step for biomechanical simulation of lung deformation is to define the
material property of the lung and apply FE analysis. We assume the lung tissue is
homogeneous, isotropic, and use the first-order Ogden model [12] to describe its
non-linear strain energy density function as

W (λ1, λ2, λ3, J ) = μ1

α1
(λ

α1
1 + λ

α1
2 + λ

α1
3 − 3) + K

2
(ln J )2, (3)

where λ1,2,3 are the deviatoric principal stretches,μ1 andα1 arematerial constants, J
is the Jacobian of the lung deformation, and K is the bulkmodulus chosen sufficiently
high to satisfy near-incompressibility. Here, we choose the Ogden parameters from
[7] for all our experiments, μ1 = 0.0329, and α1 = 6.82.

Next, we combine all the information (meshes, loads, and boundaries) defined in
the previous sections into a single script file and directly run a FE solver to simulate
the lung deformation. We integrate the open-source FEBio [7] into our simulator as
the FE solver, and a lung deformation example is shown in Fig. 5.

Fig. 5 Finite element analysis of a left lung deformation during inspiration. The top row displays the
posterior view and the bottom row shows the inferior view. Color shows the degree of displacement
with red denoting maximum displacement
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Table 1 Mean error (and standard deviation) of the deformed lungs measured in 3D space and its
x, y, and z components in mm

Case ID CT Dims Our Results Hostettler et al.[9]

Case7 512 × 512 × 136 3.79 (1.80) 5.31 (3.35)
Case8 512 × 512 × 128 6.15 (3.31) 10.81 (4.69)
Case9 512 × 512 × 128 3.17 (1.37) 5.86 (1.83)
Case10 512 × 512 × 120 4.37 (2.95) 6.93 (2.86)

This table demonstrates that our biomechanical simulation algorithm for lung deformation is accu-
rate and performs better than [9] on tested DIR-Lab 4DCT datasets [2]

3 Results and Discussion

Figure5 shows an example of FE analysis of a left lung deformation during inspi-
ration. The simulation results resemble the real 4DCT lung deformation with the
maximum displacement occurring in the posterior region along the SI direction. The
results also demonstrate realistic lung inflating effect due to the negative surface
pressure, which can be better viewed in the second row of the figure. In our FE
analysis, we define the simulation time for the inspiration phase is 2 seconds with
step size Δt = 0.1, pressure force −0.02 and traction 0.005. For other parameters,
for example, convergence tolerance, we use the default values in the FEBio solver.

Todemonstrate the accuracyof ourFEsimulation,weevaluate our simulator on the
DIR-Lab4DCTdataset [2].Weuse the caseswith 512×512 slice resolution. Each test
case has 300 manually labeled landmark points between Tex and Tin . For instance,
case-7, which has an average landmark displacement of 11.59 ± 7.87 (standard
deviation)mm, and the observer error of 0.81± 1.32mm. Detailed specifications of
the dataset can be found at http://www.dir-lab.com.

In our experiments, we compute the error as the Euclidean distance between our
simulated displacement vectors and the manually labeled ones. We also implement
the deformation filed estimation algorithm proposed by Hostettler et al. [9], and
set its model parameters using the ground-truth marker displacement vectors. We
compare its simulation results with ours in Table1, and the detailed distributions of
simulation errors for case-7 in Fig. 6. From the table, we can see that the accuracy
of our simulator improves roughly 40 % compared with [9]. The reasons why our
simulator has larger errors in z direction are twofold. First, human lung generally has
strong respiratory motions in this direction. And more importantly, the CT volume
data has stronger artifacts and lower resolution in z than x and y, considering that
the spatial resolution of tested CT data is 0.97 × 0.97 × 2.5mm.

We compute the error as the Euclidean distance between the simulated displace-
ment vectors and the manually labeled ones. In Fig. 7, we show the comparison
between our FE analysis results and the ground-truth displacement vectors for case-7.
For better illustration, we only show the left lung, which has 153 landmark points. It
can be seen that our simulator generates accurate results in the lower posterior region
where the nodal displacement is mostly prominent. We observe that our simulation
results have some angular difference with the manually labeled data in the upper

http://www.dir-lab.com
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Fig. 6 Mean error distributions of our simulation results and Hostettler et al. [9] for overall 3D,
and in x, y, and z directions for case7. Horizontal axes are the error magnitudes in mm. As visible,
our simulator has more accurate estimation

anterior region. That is partially due to lack of other prior force definitions for these
elements in the simulator as it only uses the negative surface pressure. Besides, it
is possible that the manually identified landmark points contain large errors since
nodal displacement in this region is less than or around the z spatial resolution of the
CT dataset.

We implement the deformation filed estimation algorithm proposed by Hostettler
et al. [9], and set its model parameters using the ground-truth marker displacement
vectors. We compare its simulation results with ours in Table1. From the table, we
can see that the accuracy of our simulator improves roughly 40 % compared with [9].
As indicated by [2], these test cases have very different patient lung shapes, tumor
sizes and locations, and breathingmechanisms. A simple interpolation between axial
lung envelopes adopted by Hostettler et al. [9] inevitably generates large errors while
our algorithm adapts to different patients, thus achieves comparably more accurate
results as shown in Table1.
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Fig. 7 Comparison between our simulated displacement vectors and ground-truth data at manually
identified landmark positions for case-7. The blue lines represent the ground truth displacement of
the landmark points between Tex and Tin , while the red lines represent our simulation results
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Our algorithm is a patient-customized lung deformation simulator. By provid-
ing more sophisticated constraints, the simulation quality will improve further. For
instance, the patient lung surface in case-8 is heavily curved in the back/posterior
region, thus including extra constraints to maintain this curved lung shape may make
the simulation more precise.

4 Conclusions

Wehave present a biomechanicalmodel based lung simulationmethod for examining
the patient lung deformation induced by respiration given only one CT scan input.
We model the lung stress-strain behavior using a hyperelastic model, and simulate
the lung deformation by defining accurate boundary constraints and loads. Extensive
analysis and comparisons with the manually labeled DIR-Lab dataset demonstrate
that our lung deformation results are accurate.
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